
J. Fluid Mech. (2002), vol. 455, pp. 149–174. c© 2002 Cambridge University Press

DOI: 10.1017/S0022112001007339 Printed in the United Kingdom

149

A computational model of the collective fluid
dynamics of motile micro-organisms

By M A T T H E W M. H O P K I N S1 AND L I S A J. F A U C I2

1Plasma, Aerosol, and Noncontinuum Processes, Sandia National Laboratories,
Albuquerque, NM, USA

2Department of Mathematics, Tulane University, New Orleans, LA 70118, USA

(Received 2 April 2001 and in revised form 21 September 2001)

A mathematical model and numerical method for studying the collective dynamics of
geotactic, gyrotactic and chemotactic micro-organisms immersed in a viscous fluid is
presented. The Navier–Stokes equations of fluid dynamics are solved in the presence
of a discrete collection of micro-organisms. These microbes act as point sources
of gravitational force in the fluid equations, and thus affect the fluid flow. Physical
factors, e.g. vorticity and gravity, as well as sensory factors affect swimming speed and
direction. In the case of chemotactic microbes, the swimming orientation is a function
of a molecular field. In the model considered here, the molecules are a nutrient whose
consumption results in an upward gradient of concentration that drives its downward
diffusion. The resultant upward chemotactically induced accumulation of cells results
in (Rayleigh–Taylor) instability and eventually in steady or chaotic convection that
transports molecules and affects the translocation of organisms. Computational results
that examine the long-time behaviour of the full nonlinear system are presented.

The actual dynamical system consisting of fluid and suspended swimming organ-
isms is obviously three-dimensional, as are the basic modelling equations. While
the computations presented in this paper are two-dimensional, they provide results
that match remarkably well the spatial patterns and long-time temporal dynamics
of actual experiments; various physically applicable assumptions yield steady states,
chaotic states, and bottom-standing plumes. The simplified representation of microbes
as point particles allows the variation of input parameters and modelling details, while
performing calculations with very large numbers of particles (≈ 104–105), enough so
that realistic cell concentrations and macroscopic fluid effects can be modelled with
one particle representing one microbe, rather than some collection of microbes. It
is demonstrated that this modelling framework can be used to test hypotheses con-
cerning the coupled effects of microbial behaviour, fluid dynamics and molecular
mixing. Thus, not only are insights provided into the differing dynamics concerning
purely geotactic and gyrotactic microbes, the dynamics of competing strategies for
chemotaxis, but it is demonstrated that relatively economical explorations in two
dimensions can deliver striking insights and distinguish among hypotheses.

1. Introduction
The swimming trajectory of an individual motile micro-organism is determined by

the action of its flagella and the advection by the bulk fluid flow. The orientation
of its swimming velocity vector relative to the embedding fluid can be affected by a
variety of external factors including nutrient concentration, gravity, and the vorticity
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and rate of strain of the fluid. For example, consider cells such as the algal cell
Chlamydomonas nivalis, which propel themselves by performing a ‘breast-stroke’ with
their two anterior flagella. These ‘bottom heavy’ cells tend to swim upwards due to
the anisotropic mass distribution of organelles within their cell body. An upwards
swimming tendency is termed negative geotaxis or negative gravitaxis (see Kessler
1986). The orientation of a motile micro-organism is also affected by gradients in the
local fluid velocity. Its swimming is vorticity-sensitive in that a local rotation of the
flow tends to incline the swimming axis. In the present context, the angle between
the axis of the cell and the vertical direction depends upon the rotational viscous drag
and the distance between the centre of volume and the centre of mass. Swimming
oriented by this mechanism is termed gyrotaxis (see Kessler 1986b).

The tendency of cells to swim up or down a chemical concentration gradient is
called chemotaxis. Bacterial cells such as Bacillus subtilis and Escherichia coli swim
by rotating flagella driven by reversible motors embedded in the cell wall. The
motion of these cells can be described by run intervals during which the cells swim
approximately in a straight line, interspersed with tumbles during which the organism
undergoes random reorientation. Chemotactic bacteria sense temporal changes in
nutrient concentration. It is generally thought that, if the sensed concentration level
changes, the bacteria respond by appropriately changing their tumbling probability.
Thus, run times are longer when bacteria swim up a chemoattractant gradient. Berg
(1983) summarized the operation of this most prevalent mode of bacterial chemotaxis.

Although individual cells in a suspension are independently guided by these external
cues, their interactions are mediated through the fluid. Bioconvection, the collective
behaviour of a concentrated population of cells, may give rise to sustained, relatively
steady or time-varying spatial patterns. For example, bioconvection occurs when the
upward-swimming cells cause an unstable density stratification large enough to trigger
a Rayleigh–Taylor instability in the form of descending plumes. In such a plume, the
fluid velocity overcomes the upward swimming velocity of individual cells. Figure 1
shows a series of snapshots of a suspension of the aerobic bacteria B. subtilis. Initially
the suspension is uniform. Upswimming occurs because of the source of oxygen at
the upper surface. Note that the initial instabilities at the surface eventually cause
downwelling plumes. These plumes advect oxygen throughout the region (see Kessler
et al. 1995).

Bioconvection has been studied experimentally (e.g. Plesset & Winet 1974; Kessler
1989), analytically (e.g. Levandowsky et al. 1975; Pedley, Hill & Kessler 1988; Hill,
Pedley & Kessler 1989; Pedley & Kessler 1990, 1992; Hill 1997, pp. 339–351; Metcalfe
& Pedley 1998) and numerically (e.g. Childress & Peyret 1976; Harashima, Watanabe
& Fujishiro 1988; Ghorai & Hill 1999, 2000a, b). Much progress has been made in
the development of continuum models of this dynamical system, where the micro-
organisms are represented by a continuous cell-density distribution. The coupled
partial differential equations that describe the fluid–micro-organism suspension are
amenable to mathematical analysis including linear stability analysis.

In this paper we present a mathematical model and numerical method that solves
the coupled fluid–micro-organism–nutrient system. In contrast to continuum models,
we represent the micro-organisms as a suspension of discrete particles within the
fluid domain. In the spirit of the work of Childress & Peyret (1976), the microbes
act as point sources of mass in the continuous Navier–Stokes equations, and thus
affect the fluid flow. In addition, the fluid flow affects the swimming orientation of
microbes in a number of ways. Each microbe is advected by the fluid. In the case of
gyrotactic microbes, the swimming orientation is a function of the gradients of the
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Figure 1. A series of snapshots of a suspension of the aerobic bacteria B. subtilis. Initially the
suspension is uniform. Upswimming occurs because of the source of oxygen at the upper surface.
Note that the initial instabilities at the surface eventually cause downwelling plumes. (Courtesy of
J. O. Kessler.)

fluid velocity field. In the case of chemotactic microbes, the swimming orientation
is a function of the nutrient field, which diffuses in and is advected by the fluid
that convects due to non-uniform accumulation of organisms. Swimming directions
and swimming speeds of micro-organisms are influenced by both chemotaxis and the
velocity field of the fluid. In addition, the nutrient may be consumed by the microbes,
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whose swimming speed may also be a function of nutrient concentration (see Kessler,
Burnett & Remick 2000).

The discrete representation of microbes by individual particles rather than by a
continuous cell-density concentration facilitates the direct evaluation of cell orien-
tation in response to environmental cues, as well as the superposition of stochastic
distributions that represent cell-to-cell variability in speed and orientation. Although
we choose a discrete representation of microbes, we do not seek to capture in detail
the geometry, flagellar action and local dynamics of the organisms as do the mi-
croscale models presented in Dillon, Fauci & Gaver (1995), Jones, LeBaron & Pedley
(1994) and Ramia, Tullock & Phan-Thien (1993). However, our simplified represen-
tation of microbes as point particles allows us to perform calculations with very large
numbers of particles – enough so that realistic cell concentrations and macroscopic
fluid effects can be modelled with one particle representing one microbe, rather than
some collection of microbes.

In the following sections we will present the mathematical model and numeri-
cal method that together provide a unified approach for the investigation of the
macroscopic flows that result from the collective behaviour of organisms denser than
the suspending fluid. The collective behaviour consists of geotaxis, gyrotaxis, and
chemotaxis, all of which depend upon the flow field characteristics. Thus the system
is nonlinear, not only in the governing equations, but also in their interdependence.
Computational results that examine the long-time behaviour of the full nonlinear
system will be presented.

2. Mathematical model
2.1. Fluid dynamics

We assume that the fluid is homogeneous and incompressible, and the volume fraction
of the micro-organisms is so small as to have a negligible effect on the inertia and
the viscosity µ of the fluid–microbe suspension. Indeed, we make the Boussinesq
approximation and assume that the average density of the fluid–microbe suspension
is that of the fluid (ρ̄ = ρfluid). The density of an individual microbe ρm = ρfluid + ∆ρ is
assumed to be slightly greater than the density of the fluid. Even though ∆ρ� ρfluid,
the force due to gravity on each microbe must be included in the momentum equation
below.

We consider a rectangular region of fluid in which a collection of N discrete micro-
organisms located at xk, k = 1, 2, . . . , N is immersed. These microbes have density ρm,
volume vm, and their swimming speeds and orientations are denoted by sk(t) and pk(t)
respectively.

We adopt a continuum description of the fluid, and assume that the flow is gov-
erned by the incompressible Navier–Stokes equations. In our studies of chemotactic
organisms, we also track a chemical with concentration c(x, t) that is advected by and
diffuses in the fluid, and is consumed by the microbes. Our coupled fluid–microbe–
chemical system is, therefore, governed by the following equations:

ρ̄

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u+ ∆ρvmg

N∑
k=1

δ(x− xk), (2.1)

∇ · u = 0, (2.2)
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∂c

∂t
+ u · ∇c = D∇2c− R(c)

N∑
k=1

δ(x− xk), (2.3)

dxk
dt

= u(xk, t) + skpk, k = 1, 2, . . . , N. (2.4)

Here u = u(x, t) is the fluid velocity, p = p(x, t) is the pressure and µ is the fluid
viscosity. Note that (2.1) contains a source term that accounts for the added mass due
to each of the microbes, labelled by the index k. Here, δ is the Dirac delta function,
and g is the acceleration due to gravity, pointing downward. In the evolution equation
(2.3) for the chemical, D is the diffusivity, and R(c) is the consumption rate which
depends upon the local concentration and may be chosen to reflect particular uptake
kinetics. In particular, we choose a form that is motivated by Hillesdon, Pedley &
Kessler (1995) (see equation (5.3) in § 5.1). The consumption is only non-zero at the
sites of the microbes, which act as point sinks.

Unlike the traditional models of bioconvection and chemotaxis, we do not assume
a continuous distribution of microbes n(x, t). The conservation of cell concentration
n, where J is the cell flux including swimming and advection,

∂n

∂t
= −∇ · J , (2.5)

has been replaced by the discrete equation (2.4) above. The first term on the right-
hand side of (2.4) represents the advection of the micro-organism by the bulk fluid
flow, and the second term represents the micro-organism’s motion relative to the fluid.

We designate the time-dependent swimming direction of the kth micro-organism
by an orientation unit vector, pk , or a single orientation angle, θk(t), so that

pk = (sin θk,− cos θk), (2.6)

with 0 6 θk < 2π.
The functions sk and θk will depend upon the external cues and intrinsic variability

that influence the micro-organism’s motion. For instance, the swimming speed sk may
depend upon the concentration c at the cell location. The evolution of the orientation
angle will be governed by a torque balance equation. The torques that model geotaxis,
gyrotaxis and chemotaxis are described below.

2.2. Geotaxis

The tendency of an organism to swim up (or down) in the gravitational field of
the Earth is called geotaxis or gravitaxis. In some algae, geotaxis occurs because
the centre of mass is offset from the centre of buoyancy. This offset results in an
up-righting gravitational torque. In two dimensions, this scalar torque is

τgeo = mmgh sin θk, (2.7)

where mm is the mass of the micro-organism, g is the gravitational constant, and h is
the (positive) distance that the centre of mass is offset from the centre of buoyancy.
We assume that the centre of mass is offset in a direction directly opposite the
swimming direction, as in C. nivalis (see Kessler 1986a). The θk = 0 configuration
is unstable, whereas the θk = π configuration is stable, and represents the situation
where the micro-organism is oriented straight up (pk = (0, 1)).



154 M. M. Hopkins and L. J. Fauci

2.3. Gyrotaxis

Gyrotaxis results from a combination of a geotactic torque and a torque due to the
local vorticity of the fluid. In the presence of a non-zero vorticity, the micro-organism
will experience a torque causing it to rotate. For spheres, the magnitude of this
vorticity-induced torque is given by

τvort = 4πµr3
m(∇× u) · (0, 0, 1), (2.8)

where rm the radius of the sphere. This result, due to Faxén, and its ramifications are
described by Happel & Brenner (1987). Situations where the flow is complex and the
swimming organisms nonspherical were discussed by Pedley & Kessler (1987).

When this vorticity-induced torque is coupled with the torque given by geotaxis,
two different effects can occur. The torque due to vorticity may be so large that the
geo-orientation response is overcome, and the micro-organisms rotate ‘end-over-end’
at a non-uniform rate. At smaller turning moments, the torques balance at some
intermediate orientation. Pedley & Kessler (1992) present a more detailed discussion
of these two effects, and the transition from one to another.

We are particularly interested in the situation when a gyrotactic micro-organism
is near a plume. Then, the fluid nearby has a non-zero vorticity. To the right of a
downward plume, the vorticity is positive, and to the left the vorticity is negative. This
affects the micro-organism’s orientation so that it rotates towards the downwelling
region of the fluid, or, alternatively, it rotates away from the upwelling region. Because
the micro-organisms swim into the downward plumes, we expect gyrotactic micro-
organisms to reinforce downwelling regions more locally and hence faster than purely
geotactic ones.

2.4. Chemotaxis

Because the evolution of an entrained chemical can be tracked at individual cell
sites as well as in the entire fluid region, we can implement a variety of models of
chemotaxis. Herein, we consider only chemoattractants where the micro-organisms
favour levels of higher chemical concentrations.

In the first model, we assume that the micro-organism can directly detect spatial
gradients in c(x, t), and can identify a preferred orientation, θg , pointing in the
direction of most-steeply increasing chemical concentration. We further assume that
there is some cutoff gradient magnitude, below which the cell cannot detect the
preferred direction (see Hillesdon et al. 1995). We model as an ‘effective torque’ the
behavioural reaction to the sensory input provided by the ∇c. This effective torque is
given by

τchemo = −(θk − θg)H(|∇c| − ε). (2.9)

Here H is the Heaviside step function and ε is the prescribed cutoff. This effective
torque will be multiplied by a weight parameter representing the relative strength of
this torque compared to the torques due to geotaxis and gyrotaxis in solving for the
orientation of the kth microbe.

We may also implement chemotactic strategies that rely upon the time history of the
chemical along cell trajectories as in a run-and-tumble model of bacterial chemotaxis.
The micro-organism retains a short history of its local chemical concentration. The
probability of a reorientation (tumble) is greater if the cell’s history indicates a drop
in the chemical concentration. This causes the micro-organisms to move, on average,
into regions of higher chemical concentration. We use the model described in Dillon
et al. (1995) to determine the probability of a reorientation.
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The velocity of a micro-organism may also be affected by its local chemical
concentration (see Pedley & Kessler 1992; Dillon et al. 1995; Hillesdon et al. 1995;
Kessler et al. 1995; Hill 1997, pp. 339–351). For instance, if the chemical concentration
falls below a certain threshold, the micro-organism may cease to be motile.

More detailed discussion of the particular choices of chemotaxis strategies, motility
dependence on chemical concentrations, and microbial consumption of chemical will
be presented below.

2.5. Evolution of orientation θk

The orientation vector pk is determined by an orientation angle θk that is governed
by the torque balance equation,

I
d2θk

dt2
= αgeoτgeo + αvortτvort + αchemoτchemo − αdampβ

dθk
dt
, (2.10)

where the τ are defined in the previous sections, I is the moment of inertia, β = 8πµr3
m

is the coefficient for viscous damping. The coefficients α determine the weight of the
particular torque. If the particles represent spheres, the coefficients αvort and αdamp are
equal. This need not be the case when the point particles represent various organisms
which could be active, passive and of arbitrary shape. Our model is specifically
constructed to quantitatively examine the effects of different orientation mechanisms.
This is achieved by allowing independent variation of the weight coefficients.

In order to account for cell-to-cell variability within the population, a random
component chosen from a normal distribution is applied to θk . It should be noted
that a large vorticity field (or, equivalently, a large αvort) may cause a cell to flip
‘end-over-end’. This is discussed in detail in Pedley & Kessler (1987).

The exception to the above formulation is the run-and-tumble model of chemotaxis,
which is not formulated in terms of an effective torque. An example of a run-and-
tumble simulation is presented in figure 16.

3. Numerical method
3.1. Fluid and chemical solver

Although the mathematical model described in the previous section is three-
dimensional, we will present results of the two-dimensional analogue of this model.
To adjust for two-dimensionality in computing the velocity source term, we replace
the micro-organism volume vm with a micro-organism area am = πr2

m computed using
the radius of the three-dimensional sphere with volume vm,

rm =

(
3vm
4π

)1/3

. (3.1)

Although we use am in the velocity source term, all of the cell torque computations are
based on the three-dimensional geometry. This is consistent with the analytic models
of Kessler (1986a), Pedley et al. (1988), Hill et al. (1989) and Pedley & Kessler (1990).

The numerical solution of the Navier–Stokes equation is based on the simple (Semi-
IMplicit Pressure Linked Equations) finite volume method described in Patankar
(1980) and uses the simplec modification described in van Doormaal & Raithby
(1984). This method is also used to solve the chemical transport equation. The simple
method is based on a balance of fluxes. A two-dimensional rectangular domain is
decomposed into an array of rectangular control volumes. The flux over each of
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the four volume interfaces is calculated by using the analytic solution of a one-
dimensional transport equation. These fluxes are set equal to the average source term
over the same volume. This yields a system of equations for each of the unknowns.
In order to satisfy incompressibility, an iterative pressure-correction scheme is also
implemented. For details, see Patankar (1980) and van Doormaal & Raithby (1984).

The fluid domain is covered with a uniform rectangular grid with grid spacing ∆x
and ∆y in the horizontal and vertical directions, respectively. The discrete microbes
are represented as a list of positions (xk, yk), with associated orientation angles θk ,
where k = 1, . . . , N. In interpreting our cell concentrations, we assume that M cells
per unit area in our two-dimensional domain correspond to M3/2 cells per unit
volume in a three-dimensional domain. In the simulations shown in this paper, we
choose N ≈ 104–105, which corresponds to a three-dimensional cell concentration of
106–3× 107 cells cm−3.

The microbe points are free to move throughout the fluid domain, and will affect
the fluid directly through the source term in (2.1). Since the fluid variables are defined
on the Eulerian grid, we must distribute the added mass due to the microbes at nearby
grid locations. This is done by means of a discrete approximation to the Dirac delta
function,

F ≈ (ρ̄− ρm)amg
∑

δ̂(xk − x, yk − y), (3.2)

where the Dirac delta function approximation is given by

δ̂(x, y) =


1

∆x∆y

(
1− |x|

∆x

)(
1− |y|

∆y

)
if |x| < ∆x and |y| < ∆y

0 otherwise.
(3.3)

Using this approximation, we allocate the mass of each microbe to the i, j location
on the grid with

F i,j = (ρ̄− ρm)amg
∑

δ̂(xk − xi, yk − yj). (3.4)

Here (xi, yj) indicates the spatial positions of the i, j grid point. Note that each microbe
contributes weight to at most four of the grid points. In addition, this discrete Delta
function is used to account for the microbial consumption of the chemical in (2.3).

Conversely, grid values of velocity and chemical concentration must be interpolated
to the Lagrangian microbes to update their positions in (2.4), as well as to evaluate
their swimming speeds, gyrotactic torques, and chemotactic responses. This is done
by simple bilinear interpolation.

3.2. Microorganism motility equations

In order to solve (2.10) numerically, we note that the coefficient of inertia I is
sufficiently small so that the term Id2θk/dt

2 can be neglected. This reduces the ODE
from second to first order. We performed computations that solved the full second
order ODE to very high precision, and compared these solutions to those with the
above assumption,

dθk
dt

= (αdampβ)−1(αgeoτgeo + αvortτvort + αchemoτchemo), (3.5)

over typical run parameters (i.e. torque strengths, timesteps, initial distributions of θk)
and we found the difference to be very small (≈ 10−5 relative error).

We solve (3.5) using the forward Euler method, with a random component added
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to represent cell-to-cell variability,

θn+1
k = θnk + ∆t

dθk
dt

+N(µθ, σθ∆t), (3.6)

where dθk/dt is found by computing all of the relevant torque terms in (3.5) at the
end of the nth timestep, and N(a, b) is a random variable chosen from a normal
distribution with mean a and standard deviation b. Since this random variable is
being added to the direction angle, it is applied modulo 2π.

In the case of no dependence on an entrained chemical, the speed sk of the
micro-organism is easily calculated,

sk = s0 +N(µs, σs∆t). (3.7)

In practice, we choose µs = 0 and σs = 0.1s0 s−1, so the chances of the swimming
speed becoming negative are negligible. In the case of a functional dependence upon
available chemical, we have

sk = f(c(xk, n∆t)) +N(µs, σs∆t), (3.8)

where c(xk, n∆t) is evaluated at the microbe site by bilinear interpolation, and f(c) is
a prescribed function (see equation (5.2) in § 5.1).

The microbe locations are updated by

xn+1
k = xnk + ∆t(u(xk) + skpk), (3.9)

where pk = (sin θk,− cos θk) is the unit vector associated with θk .

3.3. Computational algorithm

The state of the system at the end of timestep n is given by the fluid velocity field
u = (u, v), chemical field c, microbial locations xk and orientations θk . Our numerical
method for advancing the full system from timestep n to timestep n+ 1 is as follows:

(a) evaluate the source terms on the grid in (2.1) and (2.3) using the discrete Delta
function;

(b) use the solutions from the previous timestep as initial guesses to iterate the u,
v, and p solutions to the Navier–Stokes equations until sufficiently converged (using
the simple method);

(c) using the new u and v solutions, solve for c using the simple method, using
appropriate boundary conditions;

(d) for each microbe, evaluate the torques:
(i) if geotaxis is activated, calculate mgh sin θk;
(ii) if gyrotaxis is activated, calculate torque by interpolating ∇×u to microbial
locations;
(iii) if spatial gradient chemotaxis is activated, interpolate values of ∇c to
microbial locations;
(iv) using the torque balance equation (3.5) find the new θk;
(v) find sk by interpolating c(xk, n∆t), if necessary;

(vi) apply random effects N(µs, σs∆t) and N(µθ, σθ∆t)
alternatively, in the case of ‘run-and-tumble’ chemotaxis:

(i) save current local chemical concentration to chemical history;
(ii) reorient if necessary to get the new θk;
(iii) find sk by interpolating c(xk, n∆t), if necessary;
(iv) apply random effects N(µs, σs∆t)

(e) update each micro-organism location using (3.9).
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Description Symbol Value

Cell density ρm 1.05 g cm−3 = 1.05ρ
Cell volume vm 1.70× 10−11 cm3

Base cell swimming speed s0 75 µm s−1

Centre of gravity offset h 0.05rm

Table 1. Physical cell characteristics for Chlamydomonas nivalis algal cell given in Kessler (1986a),
and used in all of the geotaxis and gyrotaxis simulations presented in this section.

4. Numerical results: geotaxis and gyrotaxis
We consider the rectangular, horizontally periodic fluid domain, ΩR = [0, l]×[0, H],

where H varies from 8 mm to 14 mm, and l = 8 cm. We choose stress-free boundary
conditions for the fluid velocity at the upper surface y = H: uy = 0 and v = 0.
(Allowing tangential slip at the surface, rather than imposing zero flow at a rigid
boundary, has the effect of accelerating the onset of downwelling instabilities. Other-
wise, the qualitative dynamics are essentially the same as those presented below.) At
the bottom of the rectangle y = 0, the fluid velocity is zero. The Nx × Ny numerical
mesh is set so that Nx = 120 and Ny = 12 +M, where M = 0, 3, 6, and 9 for the 8,
10, 12, and 14 mm heights. This gives a fixed horizontal and vertical mesh spacing of
∆x = ∆y = 0.6667 mm.

To keep the cell concentration constant, we increased Nm with fluid domain height.
We used Nm = 100 000 cells at 14 mm as the reference cell concentration (Nm = 57 143
at 8 mm). This gave a three-dimensional cell concentration of ≈ 8.44× 105 cells cm−3.
(Recall that in interpreting our cell concentrations, we assume that M cells per unit
area in our two-dimensional domain correspond to M3/2 cells per unit volume in
a three-dimensional domain.) The initial cell distribution was random and uniform
(x ∈ U[0, l], y ∈ U[0, H]) for each run (U[a, b] has the flat density function 1/(b− a)
over the interval [a, b], and 0 elsewhere). The solution is advanced for 1600 s, using
a timestep ∆t = 0.2667 s. The following calculations were performed on a single
processor SGI IRIS workstation, and required CPU time on the order of 4–6 hours.

The fluid density was taken to be ρ = 1 g cm−3, and the fluid viscosity was
µ = 0.0175 g cm−1 s−1. The micro-organism parameters we used are defined in table 1
(taken from data for the C. nivalis algal cell in Kessler 1986a). Random components
were chosen to be µθ = 0 rad, σθ = π/4 rad s−1, µs = 0 µm s−1, and σs = 0.1s0 s−1.

Hill & Häder (1997) present statistical data on the swimming speeds and orien-
tations of motile algal cells in suspensions. In particular, they measure the mean and
the standard deviation of swimming speeds of an ensemble of both Chlamydomonas
nivalis and Peridinium gatunense in a vertical plane. The mean swimming speeds
reported for these cells are ≈ 40 µm s−1 and ≈ 75 µm s−1, respectively. In addition,
the standard deviations are reported to be ≈ 30 µm s−1 and ≈ 10 µm s−1, respectively.
Therefore, our computational microbes’ swimming speed of 75 µm s−1 is consistent
with measured data. However, the standard deviation used in the computations
represents a more homogeneous population than those measured experimentally.

The geotaxis and gyrotaxis simulations at all heights initially progress in the same
way. First, the cells in the initial distribution swim, on average, towards the surface. As
the cell density at the surface grows, a series of alternating downwelling and upwelling
regions form. After some time, the velocities in the downwelling regions overcome
the swimming speeds of the cells, and the fluid/micro-organism plumes begin their
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(a)

(b)

(c)

(d )

(e)

( f )

(g)

Figure 2. A sequence of snapshots capturing the initial overturning from a 12 mm geotactic run.
Note that all of the approximately 85 700 particles representing the discrete microbes are depicted.
Snapshots taken at times (a) 72 s, (b) 80 s, (c) 88 s, (d ) 96 s, (e) 104 s, (f) 112 s, (g) 120 s.

descent. The maximum fluid velocities grow monotonically until the plumes descend.
See figure 2(a–g) for an example of the initial overturning for geotactic cells. The
plumes reach the bottom, and the initial ‘catastrophic’ overturning instability is over.

After the initial overturning occurs, the cells are still oriented to swim towards the
surface (which they do in the regions between plumes). However, although they are
oriented upwards in a plume, the fluid velocity overcomes their upwards swimming,
and they are swept downwards. In a well-defined plume, the cells repeat a general
movement pattern: they fall in the downwelling region, reach the bottom of the plume,
move left or right into the plume’s periphery, then swim and are advected by the fluid
towards the surface, and then fall back into the downwelling region. Under some
conditions the plume remains very steady, while in others it dissipates as soon as the
initial collection of cells that caused it reaches the bottom. This essential difference is
one of the plume characteristics we wish to measure.
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Figure 3. These plumes in a particular 8 mm height run were stable for approximately 700 s before
the second one absorbed the first. While only 2000 particles representing the discrete microbes are
shown, this calculation was performed with over 57 000 particles.

To measure the plume spacing at a single output time, we subdivide the domain
into 512 vertical strips of equal width. We define fi to be the number of cells in
each vertical strip (i = 1, . . . , 512). We define f(x) to be the (unknown) function that
the fi approximate, so that f((i− 0.5)/512) ≈ fi. We apply some smoothing to fi by
replacing it with a weighted average of fi, fi−1 and fi+1. We then take the discrete
Fourier transform of fi to obtain the Fourier coefficients an, bn in the expansion

f(x) ≈∑
n

an cos
(nπx

l

)
+ ibn sin

(nπx
l

)
, (4.1)

and find the wavenumber, d, of the wave with maximum amplitude (
√
a2
d + b2

d >√
a2
n + b2

n). We define γ = l/d to be the wavelength of the wave of maximum
amplitude. In the case of stable equal-width plumes, γ measures the spacing between
the plume centres.

Because of the transient nature of the solution, we sample the solution at every 8 s
for the last 800 s of the run (so that the solution has time to reach a pseudo-steady
state, if there is one) to obtain a series of wavelengths, γi, and wavenumbers, di, for
i = 1, . . . , 100. We define γ̄ and σγ to be the mean and standard deviation of the γi,

and d̄ and σd to be the mean and standard deviation of the di. We may interpret σd
as a measure of the persistence or stability of the plumes. Unfortunately, there exist
stable patterns of variable-width plumes. This causes a non-constant di and non-zero
σd even though the plumes are very stable. For this reason, we shall report a visual
number of plumes dvis when the last output indicates a discernible plume formation
(we use +0.5 for partial plumes). See figure 3 for an example of stable varying width
plumes.

In a steady plume, cells tend to travel in a series of loops. We approximate the
period of this loop by performing a discrete Fourier transform on the height of the
cell over the last 800 s, to avoid the initial transients. This is done for 2000 sample
cells. We take the average of this cycle time over the 2000 cells and report it as tcycle.
We also report the standard deviation of cycle time per cell for each of the 2000
sample cells over the last 800 s, σcycle. This is an indicator of the consistency of the
time the cells require to cycle from top to bottom.

4.1. Geotaxis results

We first consider purely geotactic cells (αgeo = 1, αdamp = 3.09, and all other α
values = 0). To account for the variability from one run to the next because of the
randomness in micro-organism orientation and swimming speed, we performed five
runs at each of the heights: 8, 10, 12 and 14 mm. We also performed five runs at 8 mm
with a double width domain (16 cm) on a mesh of size Nx = 162, Ny = 14. The initial
cell orientations were taken from the uniform distribution θ ∈ U[0, 2π). Table 2(a)
reports the mean over all five runs for each of the fluid heights, and table 2(b) reports
the median (to exclude possible outliers) for each of the fluid heights. A typical
pseudo-steady state is presented in figure 4.
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H avg.γ̄ avg.d̄ avg.σd avg.dvis avg.tcycle avg.σcycle

(a) 8 1.18 7.25 0.92 6.70 147.3 31.0
10 1.98 5.60 1.51 5.10 116.9 48.8
12 2.03 4.63 1.95 4.30 181.2 61.1
14 2.08 4.50 1.83 3.63 192.1 60.7
8† 1.40 6.00 0.99 6.50 151.5 49.5

(b) 8 1.14 7.00 0.86 7.0 142.4 21.30
10 1.30 6.45 1.67 5.5 164.5 46.55
12 1.89 4.80 1.58 4.5 190.7 68.63
14 2.02 4.63 1.66 3.5 183.2 59.62
8† 1.30 6.69 0.87 6.8 149.0 47.02

Table 2. Average values (a) by mean and (b) by median of computed wavelength γ̄, wavenumbers
d̄, standard deviation of wavenumbers σd, visual number of plumes dvis, the cycle time of a particle
through a plume tcycle, and the standard deviation of this cycle time σcycle. These are shown for each
height h. †Runs used a 16 cm width and values for d and dvis have been halved in order to compare
with the 8 cm width runs.

H γ̄/H(means) l/dvisH (means) γ̄/H (medians) l/dvisH (medians)

8 1.48 1.49 1.43 1.43
10 1.98 1.57 1.30 1.45
12 1.69 1.55 1.57 1.48
14 1.49 1.57 1.44 1.63
8† 1.75 1.54 1.63 1.47

Table 3. Plume aspect ratios by wavenumber and by visual inspection, with averages using both
means and medians shown. †Runs used a 16 cm width.

Figure 4. Example output of geotactic ‘plumes’ at pseudo-steady state.
.

We see that the plume spacing (measured by γ̄) also increases with fluid height.
Harashima et al. (1988) obtained similar qualitative results with their continuum
model. They also report that their plumes had a constant aspect ratio. The l/dvis

information presented in table 3 indicate a plume aspect ratio of 1.4–1.6. Harashima
et al. (1988) report a constant plume aspect ratio of 2.67. We have not yet performed
controlled experiments to determine which differing parameter or feature of these
models contributes to this observed difference in plume aspect ratio.

A qualitative feature of our geotaxis calculations is that the stability of the plumes
increases as the fluid height decreases. This phenomenon is strikingly visible in
experiments (as reported by Kessler 2000, private communication) and when one sees
video simulations of the fluid–microbe system, and is also indicated quantitatively by
the decrease in σd and σcycle as h decreases.

Tracks of ≈ 13 individual cells from a 14 mm height run are shown in figure 5(a–d ).
Note that some of the cells leave/enter the domain shown. The horizontal width in
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(a)

(b)

(c)

(d )

Figure 5. Trajectories of thirteen geotactic cells from a 14 mm height run over 200 s intervals.
Triangles indicate starting locations. This figure should be compared to the gyrotactic cell trajectories
depicted in figure 11. (a) 0–200 s, (b) 200–400 s, (c) 400–600 s, (d ) 600–800 s.

these frames is 3.2 cm. The plumes are initially poorly defined, but later one can see the
cell trajectories cycling through the plume. A plot of the height of a typical geotactic
cell versus time is shown in figure 6. We see from the data in table 2 that the average
time for a cell to cycle through a plume (tcycle) increases with fluid domain height.
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Figure 6. The height of a typical microbe versus time from a 10 mm geotactic run.
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Figure 7. Distribution of orientation angles from a 10 mm geotactic run.

The variability in cycle times from cell to cell is measured by σcycle. The standard
deviations of the cycle times vary from 15% to 41% of the cycle time means, while
most are near 33%. This indicates a fairly good level of consistency over the cell
population. This type of information might be useful in determining, for example,
the time between maximal nutrient exposure for bioconvective cells (assuming the
nutrient is at the surface).

We also plot the distribution of cell orientations in figure 7. Again, we use infor-
mation from 2000 sample cells. We see that it takes a relatively short time (≈ 16 s) to
reach the ‘stable’ Gaussian-like distribution for orientation angles. The distribution is
not exactly Gaussian because of the constant geotactic reorientation towards θ = π.
The N(π, π/4) distribution is plotted for comparison. Similar plots of the orientation
angles of a collection of Chlamydomonas nivalis in a vertical plane are shown in Hill
& Häder (1997).



164 M. M. Hopkins and L. J. Fauci

(a)

(b)

(c)

(d )

(e)

( f )

(g)

Figure 8. A sequence of snapshots capturing the initial overturning from a 12 mm gyrotactic run.
Note that all of the approximately 85 700 particles representing the discrete microbes are depicted.
Snapshots taken at times (a) 72 s, (b) 80 s, (c) 88 s, (d ) 96 s, (e) 104 s, (f) 112 s, (g) 120 s.

4.2. Gyrotaxis

To determine the effects of combining the geotactic torque and the gyrotactic torque,
we performed a series of runs with αgeo = 1, αvort = 9.52, αdamp = 3.09, and αchemo = 0.
All other parameters are identical to those used in the geotactic runs presented above.

As expected, the initial overturning instability is similar to that in the geotaxis
simulations (see figure 8a–g), but the long-term behaviour of gyrotactic plumes was
very different. Qualitatively, the plumes formed and disappeared in distinct ways.
When gyrotactic cells fall to the bottom in a plume, they have more of a tendency to
stay near the bottom of the plume than the purely geotactic cells. This circumstance
occurs because when the cells try to swim upwards, the vorticity-induced torque
rotates them back into the plume. This densely packed collection of cells continues
to drive the plume from the bottom. These bottom-standing plumes are discussed
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H avg.γ̄ avg.d̄ avg.σd avg.dvis avg.tcycle avg.σcycle

(a) 8 0.552 15.59 4.06 – 408.0 210.9
10 0.568 15.67 4.73 – 428.5 214.5
12 0.599 14.74 4.54 – 457.5 217.0
14 0.627 14.38 4.87 – 489.0 223.4
8† 1.041 7.814 0.62 7.3 147.00 43.8

(b) 8 0.537 15.67 4.44 – 412.5 210.3
10 0.591 15.21 4.93 – 435.4 215.0
12 0.601 14.64 4.49 – 458.0 216.1
14 0.623 14.47 4.79 – 481.4 220.5
8† 1.000 8.0 0.26 7.0 146.7 42.12

Table 4. Average values (a) by mean and (b) by median of computed wavelength γ̄, wavenumbers
d̄, standard deviation of wavenumbers σd, visual number of plumes dvis, the cycle time of a particle
through a plume tcycle, and the standard deviation of this cycle time σcycle. These are shown for each
height h. †Runs used αvort = 0.952.

Figure 9. Example output of gyrotactic ‘plumes’ at pseudo-steady state.
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Figure 10. The height of a typical microbe versus time from a 12 mm height gyrotactic run.
Note that the cell spends a considerable amount of time at the lower heights.

in Pedley & Kessler (1992) and also in the computational studies in Ghorai & Hill
(2000).

We noted a qualitative change in the patterns formed when comparing the geotactic
runs to the gyrotactic ones (compare figure 9 to figure 4). Whereas the geotactic plumes
could often be quite stable, the gyrotactic plumes were much less so. In fact, it was
often difficult to identify plumes at all because the gyrotactic patterns were much
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(a)

(b)

(c)

(d )

Figure 11. Trajectories of thirteen gyrotactic cells from a 12 mm height gyrotactic run over 200 s
intervals. Triangles indicate starting locations. Compare to the geotactic cell tracks in figure 5.
(a) 0–200 s, (b) 200–400 s, (c) 400–600 s, (d ) 600–800 s.

more transient. Examining a single output was unilluminating (see figure 9), so dvis

was ignored for most of the runs.
As in the geotactic simulations, we performed five runs at each height, and the

average results are presented in tables 4(a) and 4(b). The data indicate that the
number of ‘plumes’ is much greater than in the geotactic case. This is supported by
comparing the d̄ values of the geotactic and gyrotactic runs. However, the plumes are
not at all stable. In fact, in the gyrotactic runs σd is much larger than that computed
in the geotactic runs discussed above.

Bees & Hill (1997) present data from experiments that examine bioconvective
patterns of Chlamydomonas nivalis in a shallow dish as functions of suspension con-
centration, depth and time. Our computational results agree with the experimental
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Figure 12. Stable plume formations from a shallow 8 mm height run with weak gyrotaxis at
end of computation. While only 2000 particles representing the discrete microbes are shown, this
calculation was performed with over 57 000 particles.

observation that plume wavelengths increase with suspension depth. More specifically,
the experiments in Bees & Hill (1997) that most closely correspond to our compu-
tational experiments are (i) where the cell concentration was 8.08 × 105 cells cm−3

at a suspension depth of 5.22 mm, and (ii) where the cell concentration was 1.02 ×
106 cells cm−3 at a suspension depth of 7.29 mm. The experimentally observed plume
wavelength early on in the experiments was (i) 4.81 mm and (ii) 6.93 mm. In a con-
tainer that was 8 cm wide (as in the computations), this would correspond to ≈ 11.5
and 16.6 plumes, respectively. Note that our computations for d̄ in the 8 mm gyrotactic
runs predict ≈ 15.6 plumes, and are thus consistent with these experiments. In fact,
our geotaxis calculations only predicted ≈ 7 plumes.

The tcycle values computed for the gyrotactic runs are large compared to the sampled
computation time of 800 s (indicating small wavenumbers), and their relatively high
standard deviations (σcycle) indicate that they are not a good measure of the time it
takes for a gyrotactic cell to loop through a plume. This is due to the fact that cells
in gyrotactic plumes tend to stay at the bottom of the plume for a longer period of
time than purely geotactic cells. A plot of the height of a typical gyrotactic cell versus
time is shown in figure 10. To present another perspective of individual gyrotactic
cells, figure 11(a–d ) shows ≈ 11 gyrotactic cell tracks. These should be compared to
the geotactic cell tracks in figure 5(a–d ). Note that the geotactic tracks span more
width and are more regular than the gyrotactic tracks. In the geotactic tracks, one
can observe the cycling through the plume. The gyrotactic tracks, on the other hand,
indicate narrower, irregular plumes that have a denser core at their bottom.

To determine the effect of the gyrotactic weighting parameter αvort we performed
a series of runs with αvort = 0.952. As expected, patterns closer to those of purely
geotactic cells are achieved. In addition, the plumes seem to be more stable. The data
for these runs (see table 4) indicate not only very stable plumes, but d̄ indicates one
more plume than in the purely geotactic runs. Visual inspection (dvis) confirms this
(see figure 12). Again, only 2000 cells are shown in this figure.

5. Numerical results: chemotaxis
In this section we present simulations of the coupled fluid–micro-organism–chemical

system using both a gradient-detecting chemotaxis model and a run-and-tumble
model.

We consider the rectangular, horizontally periodic domain ΩR = [0, l]× [0, H] with
width l = 2 cm and height H = 5 mm. The numerical mesh was taken to be Nx = 62,
Ny = 26. The boundary conditions for the fluid velocity at the upper surface y = H
are uy = 0 and v = 0. At the bottom of the rectangle y = 0, the fluid velocity is zero.
The number of computational cells was Nm = 80 000, giving a three-dimensional cell
concentration of ≈ 2.26 × 107 cells cm−3. Initially, the cells are uniformly distributed
in the rectangle. The cell parameters are given in table 5. Random components were
chosen to be µθ = 0 rad, σθ = π/4 rad s−1, µs = 0 µm s−1, and σs = 0.1s0 s−1.
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Description Symbol Value

Cell density ρm 1.10 g cm−3

Cell volume vm 1.8× 10−13 cm3

Base cell swimming speed s0 30 µm s−1

Table 5. Physical cell characteristics used to represent a ‘typical’ bacterium.

0.0245 0.0296 0.0347 0.0398 0.0449 0.0500

Figure 13. A snapshot of the microbe positions and chemical concentrations shortly after the initial
plumes have started falling (at t = 320 s). A region of depleted chemical where c < cmin,mot (below
the white line) has just appeared. While only 2000 particles representing the discrete microbes are
shown, this calculation was performed with 80 000 particles.

In these chemotaxis simulations, we are also tracking the advection, diffusion, and
uptake of a chemical in (2.3). The non-dimensional chemical concentration at the
upper surface is fixed at c0 = 0.05, and ∂c/∂y = 0 at the bottom of the rectangle.
Initially, the concentration is uniform c = c0. We used a chemical diffusion coefficient
D = 1 × 10−4 cm2 s−1, which is much larger than that of oxygen (2 × 10−5 cm2 s−1).
This non-physical diffusion coefficient was chosen to accelerate the onset of plume
formation and other qualitative features of this model.

Note that in the simulations presented below, we did not include torques due to
gyrotaxis, in order to isolate the effects of chemotaxis. Of course, gyrotactic torques
need to be included in a comprehensive model of chemotactic microbes.

5.1. Gradient-detecting chemotaxis results

We first consider microbes that can directly detect spatial gradients in c, and can
identify a preferred orientation pointing in the direction of maximal increase of
chemical. The torque balance equation (3.5) reduces to

dθk
dt

= − αchemo

βαdamp

(θk − θg)H(|∇c| − ε). (5.1)

Note that the ratio αchemo/βαdamp determines the time scale of reorientation. In
particular, we set this ratio so that, in a steady concentration field, a microbe would
be oriented to within 1% of its preferred orientation in 20 s.

The swimming speed of these ‘intelligent’ microbes depends upon the chemical
concentration at their locations. In these simulations, we assume that when this
concentration falls below a threshold cmin,mot, the cells do not swim. The function f(c)
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Figure 16. Pseudo steady-state cell and chemical concentrations for run-and-tumble chemotaxis at t = 1600 s. The white line represents the
c = cmin,mot threshold, below which the cells are not swimming. Although the cells are non-motile in this region, they are still advected by the fluid.
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in (3.8) is, therefore,

f(c) =

{
0 if c < cmin,mot

s0 if c > cmin,mot.
(5.2)

We choose the chemical consumption function R(c) in (2.3) to be

R(c) = −R0cg(c), (5.3)

where

g(c) =


0 if c < cmin,con

e

e− 1

(
1− e−

(
c−cmin,con
c0−cmin,con

)0.4)
if c > cmin,con.

(5.4)

A similar form of saturation function was used in Hillesdon et al. (1995) for their
analytic chemotactic model.

In the following simulations, we set the concentration threshold for consumption to
be cmin,con = 0.0245, and the concentration threshold for motility to be cmin,mot = 0.025.
Because cmin,con < cmin,mot we will have a region where the cells are no longer motile,
but are still consuming the chemical. We used a gradient detection cutoff of ε = 0.01
(see equation (2.9)), below which a cell cannot detect a preferred orientation. Note
that |∇c| is generally very low (< ε) in the region where c < cmin,mot.

Initially, |∇c| < ε everywhere, and none of the cells has a preferred orientation.
As the cells consume the chemical, |∇c| increases near the surface because of the
chemical source there. At some point, this gradient exceeds the threshold of ε, and
the cells in those regions detect a preferred orientation pointing towards the surface.
They begin directed upswimming. This region, where |∇c| > ε, grows downwards
from the surface, eventually causing all of the cells to undergo directed upswimming.
At this stage, c > cmin,mot everywhere. (This initial cell progression agrees with the
analytic model in Hillesdon et al. 1995.) Eventually, enough cells reach the surface,
and an overturning instability begins. The concentration does not fall below cmin,mot

until plumes first reach the bottom (see figure 13).
Once the initial instability is over, a region containing non-motile cells emerges

(where c < cmin,mot) from the bottom of the domain. The cells outside this region
continue to swim up chemical gradients. Note that this swimming is not uniformly
upwards: once a plume forms, it entrains chemical from the surface and transports it
downwards, causing concentration gradients with horizontal components. In addition,
the cells create concentration gradients themselves due to their consumption of
chemical. The cells are also advected by the fluid flow, not necessarily in the direction
of the gradient.

A pattern emerges: nearby cells swim laterally into the plumes, reinforcing them,
often from the bottom of the plume. The chemical reaches a pseudo-steady state
where the consumption of chemical in the cmin,con < c < cmin,mot region balances with
the diffusion/advection of chemical from the surface. The line where c = cmin,mot

threshold remains relatively stable while the cells continue to drive the plume (see
figure 14). This qualitative feature of bottom-driven plumes is very similar to what
was observed in gyrotactic plume dynamics in the previous section.

Cells at the bottom of the domain often spent time in the c < cmin,mot region. They
may be revived in one of two ways. One way is for a nearby plume to move slightly,
thus moving the region where the entrained chemical has a concentration c > cmin,mot.
If the downwelling velocity of the plume increases, the region in which c > cmin,mot

increases slightly, reviving the cells underneath the plume. The second way for a
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Figure 15. Height of a gradient-detecting chemotactic cell versus time. The × indicate that
the chemical concentration at the cell site is less than that required for motility (c < cmin,mot).
(a) This cell has moved into and out of the non-motile region. (b) This cell seems to be stuck in the
non-motile region.

cell to be revived is for the fluid flow to scoop up the cells near the surface of the
c < cmin,mot region, and advect them into the c > cmin,mot region. This shearing effect
is ongoing and appears (visually) to account for most revived cells. Non-motile cells
are more likely to be carried into c > cmin,mot regions by the fluid flow than to have
c > cmin,mot concentrations transported to them.

The height of a typical active cell is shown in figure 15(a). This cell was advected
into the c > cmin,mot regime by the fluid flow at ≈ 600 s, and appears to be leaving the
c < cmin,mot region at the end of the run. The small oscillations between times 800 and
1400 indicate the cell was near the bottom of a plume, constantly swimming back
into it whenever it was ejected from the bottom. The cells collect at the bottom of
the plume and drive it much like the gyrotactic cells. Figure 15(b) shows the height
of a cell that became ‘trapped’ under the c = cmin,mot threshold.

5.2. Run-and-tumble chemotaxis results

It is generally believed that bacteria cannot directly sense a spatial gradient in
chemical concentration, but respond to temporal changes in the concentration they
experience by reorienting less frequently if this concentration is increasing. This
causes the chemotactic microbes to move, on average, into regions of higher chemical
concentrations. Since we have a discrete representation of cells, we are able to track
the chemical concentration at the cell sites as a function of time. We implemented the
run-and-tumble chemotaxis model presented in Dillon et al. (1995), that calculates
the probability of a reorientation as a function of the cell’s recent chemical history.

More specifically, we assume that the durations of the run intervals τ for a microbe
are exponentially distributed with probability density function

g(τ) = λk exp(−λkτ), (5.5)

which has mean and standard deviation 1/λk .
Chemotactic cells tumble less frequently if the cell experiences an increase in

chemical concentration over a period of time. We assume that the parameter λk , which
determines the tumbling probability, is a function of the chemical concentration at
the cell site over the cell’s recent history. We choose

λk(t) =

{
Λ0 if c(xk(t), t)− c(xk(t− ∆t), t− ∆t) < 0
Λ1 if c(xk(t), t)− c(xk(t− ∆t), t− ∆t) > 0,

(5.6)
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where Λ0, Λ1, and ∆t are positive constants. Note that ∆t is not the timestep of the
numerical method, but a longer time interval during which the history is retained
(∆t = 1 s for the case presented below).

The outline of this procedure for updating the orientation angle of an individual
microbe is:

(a) compute the value of λk for each microbe;
(b) for each k, choose y ∈ [0, 1] from a uniform distribution. If y 6 1− exp(−λk∆t)

then do step (c). This determines whether a cell actually tumbles;
(c) choose the tumble angle and set θk .

For further details, we refer the reader to Dillion et al. (1995).
We set the characteristic run time between tumbles to be t = 1 s if the concentration

of chemical at the cell is decreasing (Λ0 = 1) and t = 10 s if this concentration is
increasing (Λ1 = 0.1). In addition, we assume that cell reorientations occur instan-
taneously.

Compared to the gradient-detecting case presented above, plumes formed more
slowly with this run-and-tumble chemotaxis mechanism. Although the cells have the
same swimming speed as in the gradient-detecting case, they are not spatially directed,
and thus do not have as strong a bias towards swimming up concentration gradients.
This causes more of the cells to remain in the lower regions of the domain, both
delaying initial plume formation due to a lack of sufficient cell mass at the surface,
and causing cmin,mot to be attained sooner. Overall, the plumes are more loosely defined
than in the gradient-detecting case (compare figure 16 to figure 14).

6. Summary
We have presented a robust and versatile computational model of bioconvection,

where a collection of geotactic, gyrotactic or chemotactic micro-organisms interact
with a viscous, incompressible fluid. Plume formation and stability has been studied
for purely geotactic as well as gyrotactic microbes in rectangular chambers of varying
depth. As in the recent calculations of Ghorai & Hill (2000), we demonstrate that
bottom-standing gyrotactic plumes are regeneratively reinforced in the vicinity of the
bottom of the chamber, plume wavelengths increase slightly with depth, and plume
stability decreases with depth.

We believe that the discrete representation of the microbes facilitates the direct
evaluation of cell orientation in response to environmental cues and stochastic effects.
Moreover, the work required for evaluating the interaction of N microbes is only
O(N), and not O(N2). This is because their interaction is mediated through the fluid
velocity field. Hence, while a full three-dimensional model will require many more
discrete particles, we expect the computational work to be feasible.

The actual dynamical system consisting of fluid and suspended swimming organ-
isms is obviously three-dimensional, as are the basic modelling equations. While the
computations presented in this paper are two-dimensional, they provide results that
match the spatial patterns and long-time temporal dynamics of actual experiments
remarkably well. We demonstrate that this modelling framework can be used to
test hypotheses concerning the coupled effects of microbial behaviour, fluid dynam-
ics and molecular mixing. We have not attempted as yet to tailor our model to
specific organisms or nutrients. Nevertheless, these detailed computational studies
will be the subject of future work, as will be a full three-dimensional implemen-
tation.
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